
NAG Fortran Library Routine Document

D01ALF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D01ALF is a general purpose integrator which calculates an approximation to the integral of a function
fðxÞ over a finite interval ½a; b�:

I ¼
Z b

a

fðxÞ dx

where the integrand may have local singular behaviour at a finite number of points within the integration
interval.

2 Specification

SUBROUTINE D01ALF(F, A, B, NPTS, POINTS, EPSABS, EPSREL, RESULT, ABSERR,
1 W, LW, IW, LIW, IFAIL)

INTEGER NPTS, LW, IW(LIW), LIW, IFAIL
real F, A, B, POINTS(NPTS), EPSABS, EPSREL, RESULT, ABSERR,

1 W(LW)
EXTERNAL F

3 Description

D01ALF is based upon the QUADPACK routine QAGP (Piessens et al. (1983)). It is very similar to
D01AJF, but allows the user to supply ‘break-points’, points at which the function is known to be difficult.
It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm described by
de Doncker (1978) incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976))
together with the �-algorithm (Wynn (1956)) to perform extrapolation. The user-supplied ‘break-points’
always occur as the end-points of some sub-interval during the adaptive process. The local error
estimation is described by Piessens et al. (1983).

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM Newsl.
13 (2) 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans.
Math. Software 1 129–146

Piessens R, de Doncker-Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer-Verlag

Wynn P (1956) On a device for computing the emðSnÞ transformation Math. Tables Aids Comput. 10
91–96

5 Parameters

1: F – real FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

D01 – Quadrature D01ALF

[NP3546/20A] D01ALF.1

Its specification is:

real FUNCTION F(X)

real X

1: X – real Input

On entry: the point at which the integrand f must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which D01ALF is called. Parameters
denoted as Input must not be changed by this procedure.

2: A – real Input

On entry: the lower limit of integration, a.

3: B – real Input

On entry: the upper limit of integration, b. It is not necessary that a < b.

4: NPTS – INTEGER Input

On entry: the number of user-supplied break-points within the integration interval.

Constraint: NPTS � 0.

5: POINTS(NPTS) – real array Input

On entry: the user-specified break-points.

Constraint: the break-points must all lie within the interval of integration (but may be supplied in
any order).

6: EPSABS – real Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

7: EPSREL – real Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

8: RESULT – real Output

On exit: the approximation to the integral I.

9: ABSERR – real Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
jI � RESULTj.

10: W(LW) – real array Output

On exit: details of the computation, as described in Section 8.

11: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01ALF is
called. The value of LW (together with that of LIW below) imposes a bound on the number of sub-
intervals into which the interval of integration may be divided by the routine. The number of sub-
intervals cannot exceed ðLW� 2� NPTS� 4Þ=4. The more difficult the integrand, the larger LW
should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.

D01ALF NAG Fortran Library Manual

D01ALF.2 [NP3546/20A]

Constraint: LW � 2� NPTSþ 8.

12: IW(LIW) – INTEGER array Output

On exit: IW(1) contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

13: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01ALF is
called. The number of sub-intervals into which the interval of integration may be divided cannot
exceed ðLIW� NPTS� 2Þ=2.
Suggested value: LIW ¼ LW=2.

Constraint: LIW � NPTSþ 4.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The maximum number of subdivisions allowed with the given workspace has been reached, without
the accuracy requirements being achieved. Look at the integrand in order to determine the
integration difficulties. If the position of a local difficulty within the interval can be determined
(e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) it should be
supplied to the routine as an element of the vector POINTS. If necessary, another integrator should
be used, which is designed for handling the type of difficulty involved. Alternatively, consider
relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace.

IFAIL ¼ 2

Round-off error prevents the requested tolerance from being achieved. The error may be under-
estimated. Consider requesting less accuracy.

IFAIL ¼ 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL ¼ 1.

IFAIL ¼ 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the result returned is the best which can be obtained. The same advice
applies as in the case IFAIL ¼ 1.

D01 – Quadrature D01ALF

[NP3546/20A] D01ALF.3

IFAIL ¼ 5

The integral is probably divergent, or slowly convergent. Please note that divergence can also occur
with any other non-zero value of IFAIL.

IFAIL ¼ 6

The input is invalid: break-points are specified outside the integration range, NPTS > LIMIT or
NPTS < 0. RESULT and ABSERR are set to zero.

IFAIL ¼ 7

On entry, LW < 2� NPTSþ 8,
or LIW < NPTSþ 4.

7 Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

jI � RESULTj � tol;

where

tol ¼ maxfjEPSABSj; jEPSRELj � jIjg;
and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover, it returns
the quantity ABSERR which, in normal circumstances, satisfies

jI � RESULTj � ABSERR � tol:

8 Further Comments

The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL 6¼ 0 on exit, then the user may wish to examine the contents of the array W, which contains the
end-points of the sub-intervals used by D01ALF along with the integral contributions and error estimates
over these sub-intervals.

Specifically, for i ¼ 1; 2; . . . ; n, let ri denote the approximation to the value of the integral over the sub-
interval ½ai; bi� in the partition of ½a; b� and ei be the corresponding absolute error estimate. Then,Z bi

ai

fðxÞ dx ’ ri and RESULT ¼
Xn
i¼1

ri unless D01ALF terminates while testing for divergence of the

integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, RESULT (and ABSERR) are taken to be
the values returned from the extrapolation process. The value of n is returned in IW(1), and the values ai,
bi, ei and ri are stored consecutively in the array W, that is:

ai ¼ WðiÞ;
bi ¼ Wðnþ iÞ;
ei ¼ Wð2nþ iÞ and
ri ¼ Wð3nþ iÞ:

9 Example

To compute
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� 1=7j

p dx:

A break-point is specified at x ¼ 1=7, at which point the integrand is infinite. (For definiteness the
function FST returns the value 0.0 at this point.)

D01ALF NAG Fortran Library Manual

D01ALF.4 [NP3546/20A]

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D01ALF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NPTS, LW, LIW
PARAMETER (NPTS=1,LW=800,LIW=LW/2)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
INTEGER KOUNT

* .. Local Scalars ..
real A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL

* .. Local Arrays ..
real POINTS(NPTS), W(LW)
INTEGER IW(LIW)

* .. External Functions ..
real FST
EXTERNAL FST

* .. External Subroutines ..
EXTERNAL D01ALF

* .. Common blocks ..
COMMON /TELNUM/KOUNT

* .. Executable Statements ..
WRITE (NOUT,*) ’D01ALF Example Program Results’
EPSABS = 0.0e0
EPSREL = 1.0e-03
A = 0.0e0
B = 1.0e0
POINTS(1) = 1.0e0/7.0e0
KOUNT = 0
IFAIL = -1

*
CALL D01ALF(FST,A,B,NPTS,POINTS,EPSABS,EPSREL,RESULT,ABSERR,W,LW,

+ IW,LIW,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99999) ’A - lower limit of integration = ’, A
WRITE (NOUT,99999) ’B - upper limit of integration = ’, B
WRITE (NOUT,99998) ’EPSABS - absolute accuracy requested = ’,

+ EPSABS
WRITE (NOUT,99998) ’EPSREL - relative accuracy requested = ’,

+ EPSREL
WRITE (NOUT,99999) ’POINTS(1) - given break-point = ’, POINTS(1)
WRITE (NOUT,*)
IF (IFAIL.NE.0) WRITE (NOUT,99996) ’IFAIL = ’, IFAIL
IF (IFAIL.LE.5) THEN

WRITE (NOUT,99997)
+ ’ RESULT - approximation to the integral = ’, RESULT

WRITE (NOUT,99998)
+ ’ ABSERR - estimate of the absolute error = ’, ABSERR

WRITE (NOUT,99996)
+ ’ KOUNT - number of function evaluations = ’, KOUNT

WRITE (NOUT,99996) ’IW(1) - number of subintervals used = ’,
+ IW(1)
END IF
STOP

*
99999 FORMAT (1X,A,F10.4)
99998 FORMAT (1X,A,e9.2)
99997 FORMAT (1X,A,F9.5)
99996 FORMAT (1X,A,I4)

END
*

real FUNCTION FST(X)
* .. Scalar Arguments ..

D01 – Quadrature D01ALF

[NP3546/20A] D01ALF.5

real X
* .. Scalars in Common ..

INTEGER KOUNT
* .. Local Scalars ..

real A
* .. Intrinsic Functions ..

INTRINSIC ABS
* .. Common blocks ..

COMMON /TELNUM/KOUNT
* .. Executable Statements ..

KOUNT = KOUNT + 1
A = ABS(X-1.0e0/7.0e0)
FST = 0.0e0
IF (A.NE.0.0e0) FST = A**(-0.5e0)
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D01ALF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-02
POINTS(1) - given break-point = 0.1429

RESULT - approximation to the integral = 2.60757
ABSERR - estimate of the absolute error = 0.60E-13
KOUNT - number of function evaluations = 462

IW(1) - number of subintervals used = 12

D01ALF NAG Fortran Library Manual

D01ALF.6 (last) [NP3546/20A]

	D01ALF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	F
	X

	A
	B
	NPTS
	POINTS
	EPSABS
	EPSREL
	RESULT
	ABSERR
	W
	LW
	IW
	LIW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

